top of page
Writer's pictureVistacraft Engineers

The Role of Buildings and the Case for Whole Building Design


globe

The ‘Whole Buildings’ process draws from the knowledge pool of all the stakeholders across the life cycle of the project, from defining the need for a building through planning, design, construction, building occupancy, and operations.


Buildings are deceptively complex. At their best, they connect us with the past and represent the greatest legacy for the future. They provide shelter, encourage productivity, embody our culture, and certainly play an important part in life on the planet. In fact, the role of buildings is constantly changing. Buildings today are life support systems, communication and data terminals, centers of education, justice, and community, and so much more. They are incredibly expensive to build and maintain and must constantly be adjusted to function effectively over their life cycle. The economics of building has become as complex as its design.

Data from the U.S. Energy Information Administration illustrates that buildings are responsible for almost half (48%) of all greenhouse gas emissions annually. Seventy-six percent of all electricity generated by U.S. power plants goes to supply the building sector and buildings often contribute to health problems such as asthma and allergies due to poor indoor environmental quality. Safety is also paramount in buildings with security-related expenditures one of the fastest rising expenses.

The federal government has responded to these challenges by putting into place Executive Orders and Mandates. High performance buildings were defined in the Energy Policy Act of 2005 (Public Law 109-058) as: “buildings that integrate and optimize all major high-performance building attributes, including energy efficiency, durability, life-cycle performance, and occupant productivity”.

The Energy Independence and Security Act (EISA) of 2007 further established a new and aggressive plan for achieving energy independence in our nation’s building stock by the year 2030. The Act requires that federal buildings (new and renovations) achieve fossil fuel-generated energy consumption reductions on the order of 55 percent in the year 2010 to 100 percent in 2030. The Act also requires that sustainable design principles be applied to siting, design, and construction. It is of note that the Act defines High-Performance Buildings as the integration and optimization on a life cycle basis all major high-performance attributes, including energy conservation, environment, safety, security, durability, accessibility, cost-benefit, productivity, sustainability, functionality, and operational considerations. These issues are synonymous with whole building design.

Several programs, both public and private sector, define standards and measures for sustainable buildings. Of the government programs, the most well known and influential is Energy Star, providing an energy performance rating system applied to buildings. Of the private sector programs, the best known and most influential is the USGBC’s LEED® rating system. Others include Green Globes®, the NAHBGreen® certification system administered by the National Association of Home Builders, Greenguard®, and the Living Building Challenge® administered by thhe International Living Future Institute.

Whole Building Design encompasses all of these issues and programs and is an essential way of approaching building projects. Understanding Whole Building Design concepts will enable you to think and practice in an integrated fashion to meet the demands of today’s as well as tomorrow’s high-performance building projects.

Article based on that found at the Whole Building Design Guide website, a program of the National Institute of Building Sciences.

1 view0 comments

Recent Posts

See All

Comments


bottom of page